InVivoMAb human IgG1 isotype control

Clone N/A
Catalog # BE0297
Category Isotype Controls
Price
Size Regular Price
1 mg $ 150.00
5 mg $ 525.00
25 mg $ 1,650.00
50 mg $ 2,450.00
100 mg $ 3,250.00
About InVivoMAb human IgG1 isotype control

The human IgG1 isotype control antibody is purified from human myeloma serum and is of unknown specificity. This antibody is suitable for use as a non-targeting isotype control in various in vitro and in vivo studies. It can also be used as a negative control in various diagnostic applications such as ELISA, Western blot, immunofluorescence, immunohistochemistry, immunoprecipitation, and flow cytometry. For research use only.

InVivoMAb human IgG1 isotype control Specifications
IsotypeHuman IgG1, κ
Formulation
  • PBS, pH 7.0
  • Contains no stabilizers or preservatives
Endotoxin
  • <2EU/mg (<0.002EU/μg)
  • Determined by LAL gel clotting assay
Purity
  • >95%
  • Determined by SDS-PAGE
Sterility0.2 μm filtration
ProductionPurified from human myeloma serum
PurificationProtein A
RRIDAB_2687817
Molecular Weight150 kDa
Human Pathogen Test Results
  • Human immunodeficiency virus: Negative
  • Hepatitis B virus: Negative
  • Hepatitis C virus: Negative
  • Syphilis: Negative
StorageThe antibody solution should be stored at the stock concentration at 4°C. Do not freeze.
Application References

INVIVOMAB HUMAN IGG1 ISOTYPE CONTROL

Li, M., et al. (2019). “Genomic ERBB2/ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: a whole-exome sequencing analysis.” Gut 68(6): 1024-1033. PubMed

OBJECTIVES: Patients with gallbladder carcinoma (GBC) lack effective treatment methods largely due to the inadequacy of both molecular characterisation and potential therapeutic targets. We previously uncovered a spectrum of genomic alterations and identified recurrent mutations in the ErbB pathway in GBC. Here, we aimed to study recurrent mutations of genes and pathways in a larger cohort of patients with GBC and investigate the potential mechanisms and clinical significance of these mutations. DESIGN: We performed whole-exome sequencing (WES) in 157 patients with GBC. Functional experiments were applied in GBC cell lines to explore the oncogenic roles of ERBB2/ERBB3 hotspot mutations, their correlation with PD-L1 expression and the underlying mechanisms. ERBB inhibitors and a PD-L1 blocker were used to evaluate the anticancer activities in co-culture systems in vitro and in vivo. RESULTS: WES identified ERBB2 and ERBB3 mutations at a frequency of 7%-8% in the expanded cohort, and patients with ERBB2/ERBB3 mutations exhibited poorer prognoses. A set of in vitro and in vivo experiments revealed increased proliferation/migration on ERBB2/ERBB3 mutation. Ectopic expression of ERBB2/ERBB3 mutants upregulated PD-L1 expression in GBC cells, effectively suppressed normal T-cell-mediated cytotoxicity in vitro through activation of the PI3K/Akt signalling pathway and contributed to the growth and progression of GBC in vivo. Treatment with an ERBB2/ERBB3 inhibitor or a PD-L1 monoclonal antibody reversed these immunosuppressive effects, and combined therapy revealed promising therapeutic activities. CONCLUSIONS: ERBB2/ERBB3 mutations may serve as useful biomarkers in identifying patients who are sensitive to ERBB2/ERBB3 inhibitors and PD-L1 monoclonal antibody treatment. TRIAL REGISTRATION NUMBER: NCT02442414;Pre-results.